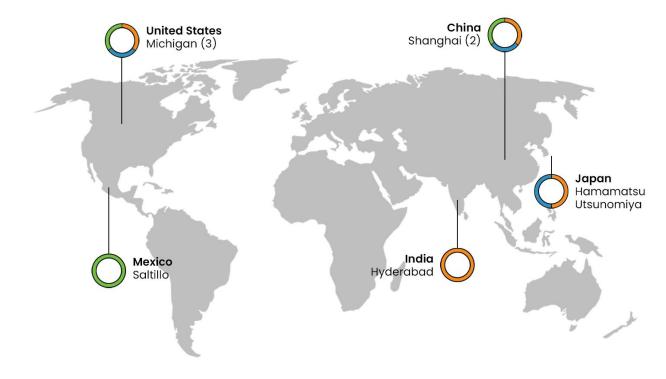


GHSP's DFMA Transformation

Company Overview

Established 1924 **Headquarters** Holland, MI Employees 1,400 **Annual Sales** \$300M Ownership Privately owned within JSJ Group **Customers, Partners**



Global Presence

- Sales
- 02 Engineering
- 03 Manufacturing

Core Products (Automotive)

Shift-by-wire systems •

- All embodiments across multiple global OEMS
- Flexible core platforms
- Powertrain and multifunction controls

Conventional shifters •

- Common core components
- Decoration & lighting

Controllers/ECUs •

- Shift by wire
- Trailer brake & lighting
- Active dampening & ride height

E-pumps •

- Cooling & Lubricating across all powertrains & applications
- Oil, Water, Glycol, Dielectric

Actuators

- Axle disconnect, Sway Bar, Transmission/Park Lock
- Vibration Control & Enhancement

Shift-by-Wire

"The rotary shifter on the 2017 Ford Fusion represents an innovation that actually improves safety."

Automotive News

"The 2018 GMC Terrain may elevate General Motors into a **design leader** for the next generation of automatic transmission shifters."

Electronic Pump Applications

- External Electric Oil Pumps
- Internal Electric Oil Pumps
- Hydraulic Clutch Actuator
- Internal Electric Motor
- External Electric Motor
- Electric Water Pumps
- Dual Electric Pumps
- High Voltage IKW

Integrated Embedded Controls

- LIN, CAN and PWM Communication
- Speed, Torque and Pressure Control
- Signal Processing
- Diagnostics
- Models

Compact eMachines

- In-Slot, Segmented, Optimized Power and Density Stator
- Sintered, Bonded and Sensor (Less)
 Rotor
- Die Cast, Molded and Stator-Only Housing

Multi-function, Fluid Controls

- Pressure, Flow and Power Capacity
- Temperature
- Response
- Stability
- Cooling
- Pressure Control

Control Module Applications

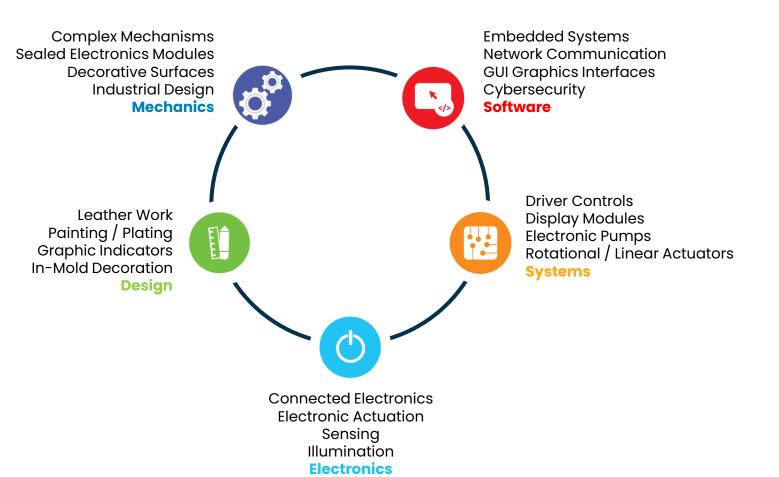
- Trailer Brake
- Trailer Lighting
- Active Dampening
- Standard Interface Board (SIB)
- Vibration Emulation/Cancellation

Software Capabilities

- AutoSAR
- ISO 26262 ASIL A/B
- **GM Cybersecurity**
- Diagnostics / DTC
- FOTA Capable
- Control Algorithm Development

Sensors

- Body Accelerometers
- Ride Height
- Wheel Hub Accelerometers
- Tri-Axis Hall Effect Position


Communication

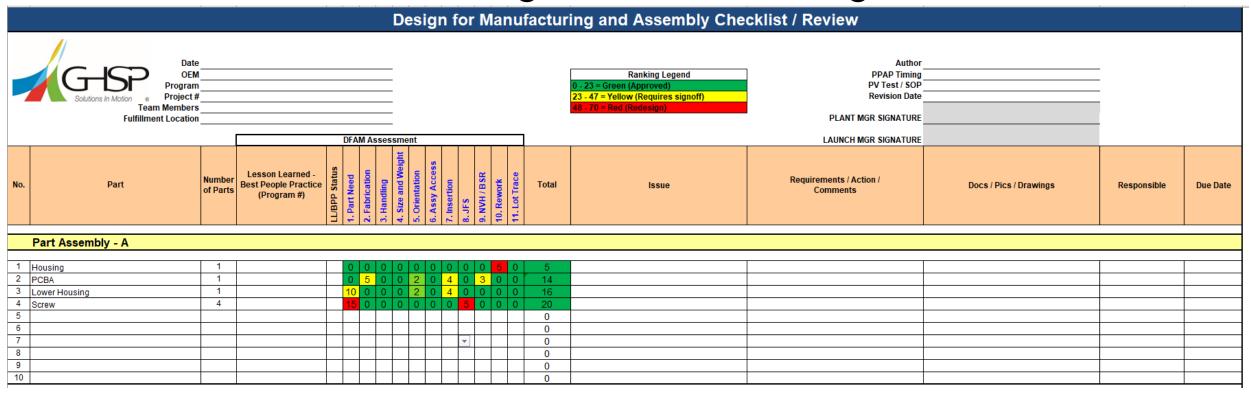
- CAN / CAN-FD
- LIN
- PWM

Core Competencies

Vertical Integration

- Software, hardware and mechanical design
- Full performance and validation testing
- SMT manufacturing PCBAs
- ESD-controlled clean room production
- Wire harness manufacturing
- Laser welding
- Plastic injection molding
- Stator over-molding
- Motor winding
- Leather stitching and wrapping Knobs, Boots
- Complex assembly Controllers, Pumps

In the Beginning...

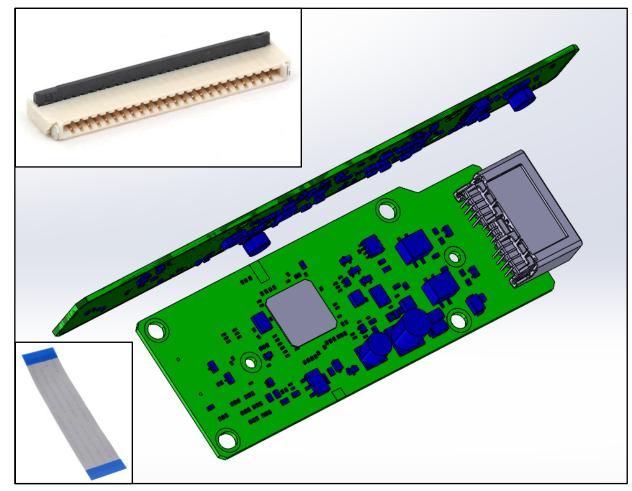

- Before 2016, DFMA was a single task in our Product Development Process.
- It usually consisted of 2 people (Mechanical Engineer and Process Engineer) who would review the design on a screen.

Progression

• Excel form created to give some sort of guidence.

Solution!

- 2016 a team of 5 GHSP employees traveled to BDI
- Spent 3 days using the DFMA software, allowing BDI to showcase its capabilities
- Returned to GHSP and purchased the software immediately

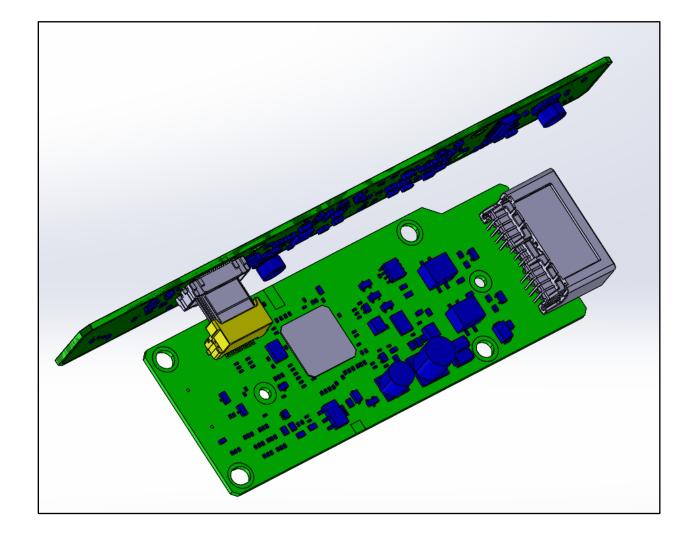


Original Design:

- 1) Main PCBA with a ZIF Connector
- 2) LED PCBA with a ZIF Connector
- 3) FFC to connect the 2 PCBAs

Original Assembly Process:

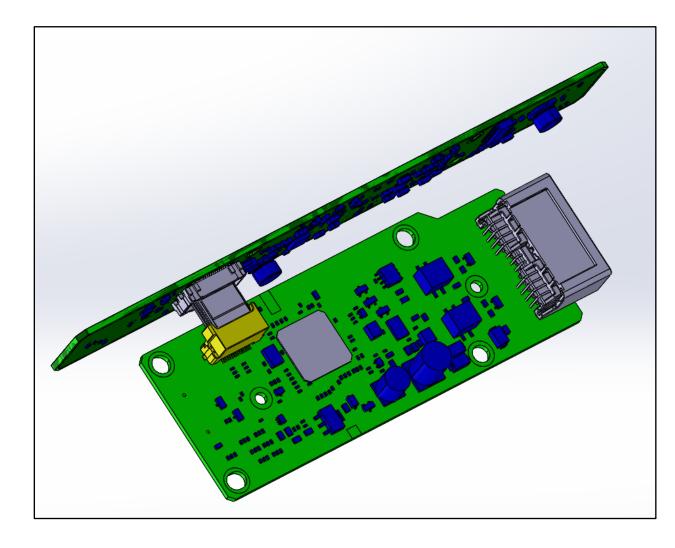
- Operator would install one end of FFC into Main PCBA
- 2) Then fish the FFC through a slot in a plastic housing, before placing the Main PCBA into the housing
- 3) Then connect the other end of the FFC, with very limited length of cable, into the LED PCBA
- 4) Last, place the LED PCBA into the housing



Production Design:

- 1) Main PCBA with a Board-to-Board Connector
- 2) LED PCBA with a Board-to-Board Connector

Production Assembly Process:


- Operator places Main PCBA into housing
- 2) Operator places LED PCBA into housing, automatically making connection between PCBAs

Benefits:

- 1) Removes I component from BOM
- 2) Reduces cycle time
- 3) Reduces machine complexity
- 4) Easier confirmation of connection, reducing potential quality/warranty issues
- 5) Reduces ergonomics issues not having to pinch the FFC between thumb and fore finger

DFMA® - Boothroyd Dewhurst, Inc.

Analysis Totals for Design for Manufacture and Assembly (DFMA)

Thursday, June 6, 2024

Ribbon Cable Scenarios.dfax

Per product costs, \$	Baseline ZIF Connector_5 /15/19	Right Angle B2B_5/15/1 9	Diffe	rence	Right Angle B2B_5/15/1 9_Actual	Diffe	rence
Assembly process	0.32	0.08	-0.24	-75%	0.08	-0.24	-75%
Manufacturing piece part	1.46	1.50	0.04	2%	1.56	0.09	6%
Total cost without tooling	1.79	1.58	-0.21	-12%	1.64	-0.15	-8%
Total tooling cost	0.00	0.00	0.00	-50%	0.00	0.00	-50%
Total cost	1.79	1.58	-0.21	-12%	1.64	-0.15	-8%
Total tooling investment, \$							
Assembly tools and fixtures	6,000	3,000	-3,000	-50%	3,000	-3,000	-50%
Manufacturing tooling	0	0	00	0%	0	00	0%
Total investment	6,000	3,000	-3,000	-50%	3,000	-3,000	-50%
Production life data							
Life volume	2,867,800	2,867,800	0	0%	2,867,800	0	8%
Total production life cost, \$	5,130,353	4,533,600	-596,753	-12%	4,699,933	-430,420	-8%

<u>Assembly Process</u> → <u>Cost Avoidance:</u>

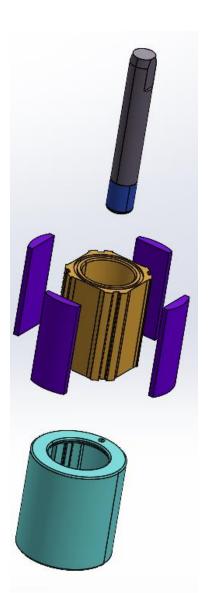
-\$0.24

Manufacturing Piece Part Cost Avoidance:

+\$0.09

Total Life (5 yrs) Cost Avoidance:

~\$430,000


Success Stories: Ford 1T50

Original Design:

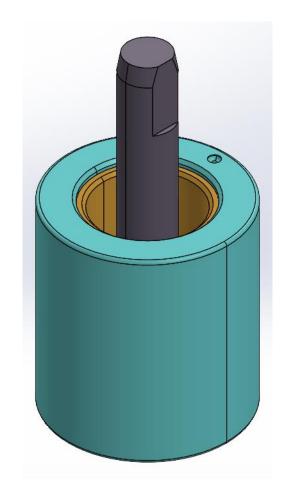
- 1) GHSP to make Rotor, which consist of:
 - a) Core
 - b) 4 Magnets
 - i. Requires Adhesive and Activator
 - c) Shaft
 - d) Plastic Overmold

Original Assembly Process:

- 1) Place Core into fixture
- 2) Press Shaft into Core
- 3) Apply Activator to Magnets
- 4) Apply Adhesive to Core
- 5) Install Magnets onto Core, allowing proper dry time (~60 seconds)
- 6) Overmold the assembly

Success Stories: Ford 1T50

Production Design:


1) Purchase Rotor from Supplier

Production Assembly Process:

1) Operator (or machine) loads Rotor into fixture

Benefits:

- 1) Removes 5 components from BOM
- 2) Reduces cycle time
- 3) Removes a whole assembly station (less Capital investment)

Success Stories: Ford 1T50

DFMA® - Boothroyd Dewhurst, Inc.

Analysis Totals for Design for Manufacture and Assembly (DFMA)

Thursday, June 6, 2024

12550 Ford 1T50 Pump.dfax

Per product costs, \$	0 -	New Design_7/25 /19_Purchas ed Rotor	Difference		New Design_7/25 /19_Purchas ed Rotor_Actua	Diffe	erence
Assembly process	10.34	8.54	-1.81	-17%	8.54	-1.81	-17%
Manufacturing piece part	23.79	22.70	-1.09	-5%	22.66	-1.13	-5%
Total cost without tooling	34.14	31.24	-2.90	-8%	31.20	-2.94	-9%
Total tooling cost	0.59	0.56	-0.03	-5%	0.56	-0.03	-5%
Total cost	34.73	31.80	-2.93	-8%	31.76	-2.97	-9%

Total tooling investment, \$							
Assembly tools and fixtures	0	0	00	0%	0	00	0%
Manufacturing tooling	815,261	776,738	-38,523	-5%	775,738	-39,523	-5%
Total investment	815,261	776,738	-38,523	-5%	775,738	-39,523	-5%

Production life data and weight							
Life volume	1,380,000	1,380,000	0	0%	1,380,000	0	0%
Total production life cost, \$	47,924,937	43,883,976	-4,040,961	-8%	43,828,776	-4,096,161	-9%
Total weight, kg	0.52	0.46	-0.05	-11%	0.46	-0.05	-11%

<u>Assembly Process</u> <u>Cost Avoidance:</u>

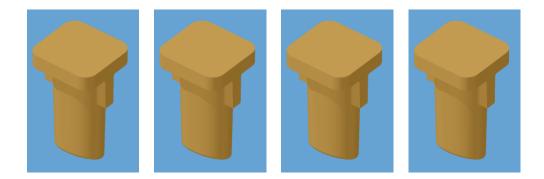
-\$1.81

Manufacturing Piece Part Cost Avoidance:

-\$1.13

Total Life (6 yrs)
Cost Avoidance:

~\$4,096,000



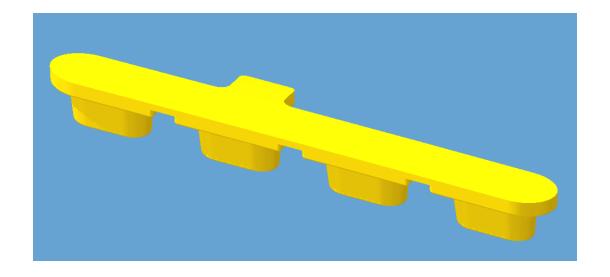
Original Design:

1) 4 Individual Light Pipes

Original Assembly Process:

1) Operator loads each individual Light Pipe into housing

Production Design:


1) 1 Light Pipe

Production Assembly Process:

1) Operator loads Light Pipe into housing

Benefits:

- 1) Reduces cycle time
- 2) Reduces cost

Original Design:

1) 8 Screws

Original Assembly Process:

1) Operator (or machine) drives 8 Screws

Production Design:

1) 4 Screws

Production Assembly Process:

1) Operator (or machine) drives 4 Screws

Benefits:

- 1) Reduces cycle time
- 2) Reduces cost

Original Design:

- 1) 7 Individual Light Pipes
- 2) 7 Individual Button Plungers

Original Assembly Process:

- 1) Operator loads Light Pipe into Plunger
- 2) Operator loads Plunger/Light Pipe assembly into housing

Production Design:

1) 72-Shot Light Pipe/Button Plunger

Production Assembly Process:

1) Operator loads Light Pipe/Button Plunger into the housing

Benefits:

- 1) Removes 7 components from BOM
- 2) Reduces storage space at the assembly station for each component
- 3) Reduces cycle time
- 4) Reduces machine complexity
- 5) Reduces number of Injection Molding Tools needed

DFMA® - Boothroyd Dewhurst, Inc.

Analysis Totals for Design for Manufacture and Assembly (DFMA)

Thursday, June 6, 2024

12614 RAM Button Pack.dfax

Per product costs, \$	Baseline Original_DF MAMetrics	Original_DF MA Metrics_3 Ideas				ifference	
Assembly process	1.14	0.91	-0.23	-20%	0.90	-0.24	-21%
Manufacturing piece part	6.40	5.13	-1.27	-20%	5.39	-1.01	-16%
Total cost without tooling	7.54	6.03	-1.51	-20%	6.29	-1.25	-17%
Total tooling cost	0.85	0.81	-0.04	-4%	0.89	0.04	5%
Total cost	8.39	6.85	-1.54	-18%	7.18	-1.21	-14%
Total tooling investment, \$							
Assembly tools and fixtures	0	0	00	0%	0	00	0%
Manufacturing tooling	1,695,688	1,625,688	-70,000	-4%	1,775,231	79,543	5%
Total investment	1,695,688	1,625,688	-70,000	-4%	1,775,231	79,543	5%
Production life data and weight							
Life volume	2,000,000	2,000,000	0	0%	2,000,000	0	0%
Total production life cost, \$	16,774,365	13,691,032	-3,083,333	-18%	14,363,810	-2,410,556	-14%
Total weight, kg	0.04	0.03	-0.01	-26%	0.03	-0.01	-26%

<u>Assembly Process</u> <u>Cost Avoidance:</u>

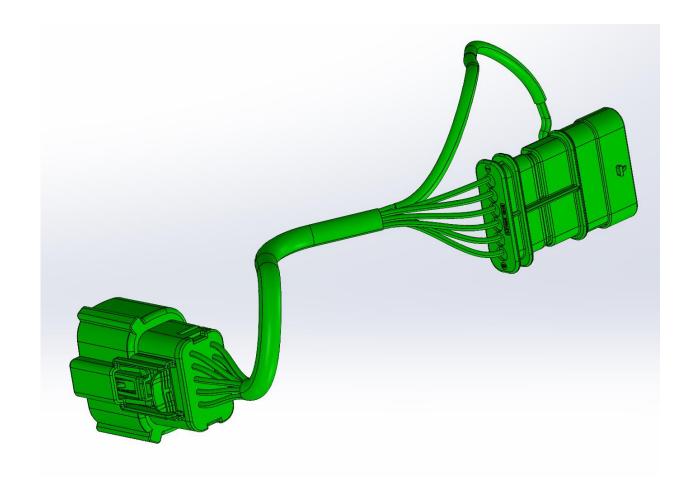
-\$0.24

Manufacturing Piece Part Cost Avoidance:

-\$1.01

Total Life (7 yrs)
Cost Avoidance:

~\$2,410,000


Success Stories: Stellantis Pursuit

Original Design:

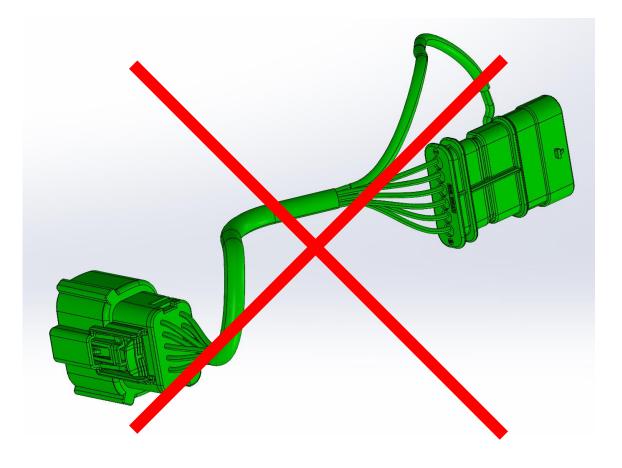
1) 1 Lever Wire Harness

Original Assembly Process:

- 1) Operator installs Wire Harness
 Connector 1
- 2) Operator routes Wire Harness
- 3) Operator installs Wire Harness
 Connector 2

Success Stories: Stellantis Pursuit

Production Design:


1) No Lever Wire Harness

Production Assembly Process:

1) Was able to get the Customer to add a jumper to their Vehicle Wire Harness and have them make the connection.

Benefits:

- 1) Removes I components from BOM
- 2) Reduces cost
- 3) Reduces cycle time
- 4) Reduces possible ergonomics issues

Success Stories: Stellantis Pursuit

DFMA® - Boothroyd Dewhurst, Inc.

Analysis Totals for Design for Manufacture and Assembly (DFMA)

Thursday, June 6, 2024

12504 FCA Pursuit IP Shifter.dfax

Per product costs, \$	Baseline Original_Pro duction Volumes	Original_Pro duction Volumes_Re moved Wire Hamess	Diffe	fference	
Assembly process	4.07	3.89	-0.19	-5%	
Manufacturing piece part	31.10	29.82	-1.28	-4%	
Total cost without tooling	35.17	33.71	-1.47	-4%	
Total tooling cost	0.98	0.98	0.00	0%	
Total cost	36.15	34.68	-1.47	-4%	

Total tooling investment, \$				
Assembly tools and fixtures	0	0	00	0%
Manufacturing tooling	702,760	702,760	00	0%
Total investment	702,760	702,760	00	0%

Production life data and weight				
Life volume	720,000	720,000	0	0%
Total production life cost, \$	26,028,119	24,972,043	-1,056,075	-4%
Total weight, kg	0.20	0.20	0	0%

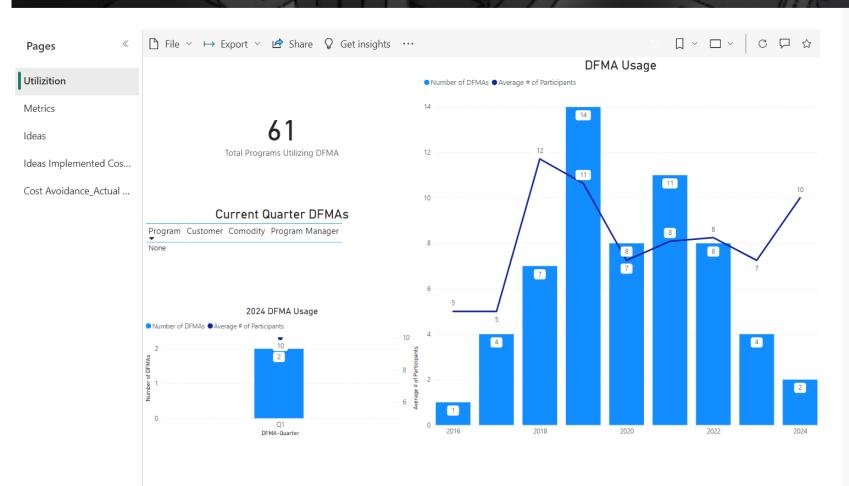
<u>Assembly Process</u> <u>Cost Avoidance:</u>

-\$0.19

Manufacturing Piece Part Cost Avoidance:

-\$1.28

Total Life (8 yrs)
Cost Avoidance:

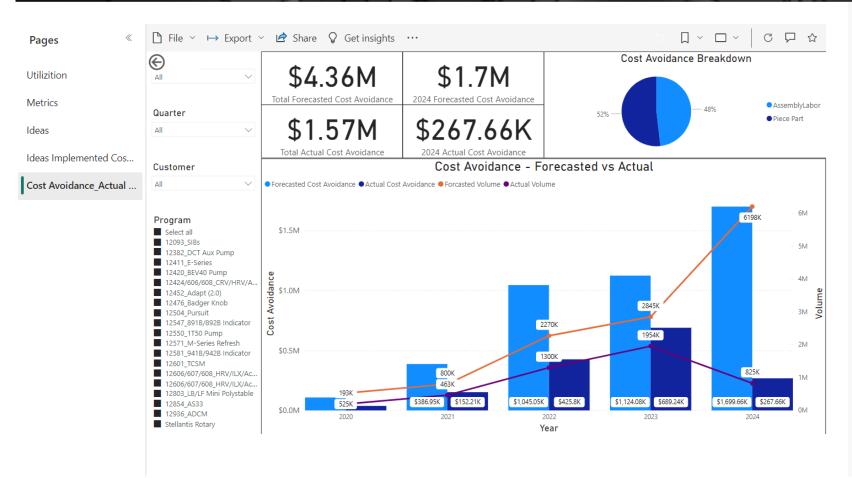

~\$1,056,000

- Adding a DFMA Metrics Page is valuable (thank you Kohler!)
 - We use Power Bl on a SharePoint page
- Easy reference when questioned about the benefits of DFMA's
 - Especially when/if someone questions the worth of a group of people spending 2-3 days reviewing a product
- We like using Power BI because it is more interactive than Excel graphs/charts

DFMA - Design for Manufacturing & Assembly

Our DFMA objective is to reduce development time, improve cost position, and foster early collaboration through rapid data driven design decisions.

DFMA Experts



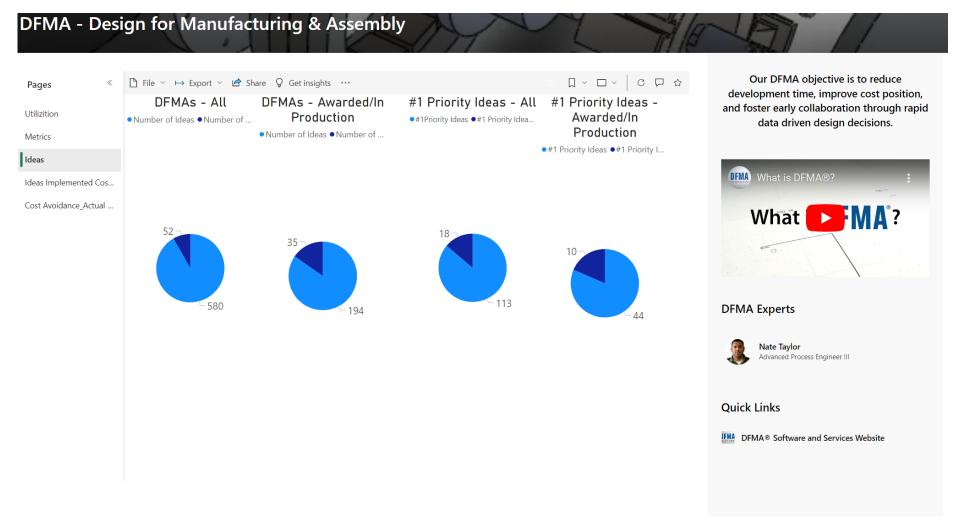
Quick Links

IFMA DFMA® Software and Services Website

DFMA - Design for Manufacturing & Assembly

Our DFMA objective is to reduce development time, improve cost position, and foster early collaboration through rapid data driven design decisions.

DFMA Experts



Quick Links

IFMA DFMA® Software and Services Website

Not all sunshine and roses

Recommendations for New Users

- 1) 3 days can be a lot, especially when your products are similar to each other
 - a) It's ok to do 1-2 day events, but at least <u>do a review</u>
 - b) Helps to have the BOM created and CAD files loaded prior to the start
- 2) Online DFMA's
 - a) Ok to do, but limit each meetings to 2 hours
 - i. 2-hour meeting in morning and another 2-hour meeting in the afternoon
 - ii. 2-hour meeting the morning (or afternoon) for 2-3 consecutive days
 - b) Get back to in person DFMA's as soon as you can

Recommendations for New Users

- 3) Include an Exploded View Drawing/PowerPoint of the product with the meeting invite (or an email prior)
- a) Gives attendee a chance to understand/grasp what they will be reviewing prior the meeting
- 4) Hold Follow Up/Open Issues meetings
 - a) Prioritize the ideas
 - b) Assign the ideas to people
 - c) Hold people accountable

Recommendations for New Users

- 5) It may take more than 1 DFMA
- a) Depending on the length of the product development phase, you may need to hold 2 or even 3 DFMAs
 - b) These can be shorter ½ to 1-day events

Thank You

- Nate Taylor
- •taylorn@ghsp.com

