"Tools for Convincing Skeptics to Invest in DFMA"

Aaron Ulmer, presenting Robert B. Male, P.E., Ph.D., coauthor

Design Producibility Engineering L3 Technologies, Inc. – Communication Systems West

Design for Manufacturing and Assembly International Forum Providence, Rhode Island June 6th and 7th, 2017 This document consists of information that is not defined as controlled technical data

under 22 CFR 120.11.

A Three- Part Approach to Create Value with DFMA

DFMA is among the Best Practices of Innovation, Quality, Value, and Profitability.

This document consists of information that is not defined as controlled technical data

under 22 CFR 120.11.

Leverage Design Systems to deploy DFMA

under 22 CFR 120.11.

How does Stakeholder Analysis enable DFMA ?

Stakeholder Analysis

Role	Values /	Perceived	Value-Add Strategy	
	Performance Metrics	Constraints	of DFMA	
Program	1.) On-time delivery	- DFMA is expendable	- Reduces risk of schedule delays	
Manager	2.) NRE under Budget	- Extra design delays project	- R.O.I. >1	
	3.) High Margin	- Assembly costs are	- Low costs = higher profit	
	4.) No Customer Returns	invisible	- Reduces returns' root cause	
Engineer	1.) Comply with spec	- Optimization takes time	 DFMA = Reliability = Robustness 	
	2.) Robust Design	- DFMA requirements vague	- DFMA now = less ECNs later	
	3.) Complete Milestones	- Lower cost = less robust	- Shows efficient, creative design	
	4.) Elegant design	- Design ownership		
Operations	1.) On-time shipments	- Collaboration is	 Less variation = less rework 	
	2.) Low Rework	inconvenient	= ship on-time	
	3.) Available Material	- Not the design expert	- Improves drawings and	
	4.) Passes Inspect/Test	- Late involvement	instructions	

What are ways to get Buy-In for DFMA ?

Methods of Influence, 1-9

Methods of Influence, 10-18

Influencing Others with John Ullmen

lynda.com

is not denned as controlled technical data

under 22 CFR 120.11.

Which Method of Influence to use ?

Foundation	Risk	Social	Personal
	Impact	Network	Trust
 1. Provide Rational Rational Analysis 3. Reference Legitimate Policies and standards 12. Align with shared values, principles or purposes 13. Connect to 	4. Establish urgency or scarcity 5. Demonstrate Pain and Gain 10. Present striking comparisons or contrast 11. Add impact to your ideas	2. Cite credible Sources 6. Build alliances and coalitions 7. Use social Proof 9. Encourage commitments and consistency	 8. Initiate reciprocation or exchange 14. Build rapport relationships and trust 15. Like and be likeable likeable 16. Request help or advice 17. Be influenceable
strategy or high	This document cons	ists of information that	18. Lead by
level goals	is not defined as co	ntrolled technical data	Example

under 22 CFR 120.11.

How to Facilitate DFMA ?

Facilitating DFMA in Concept Phase

Target Costing

Prioritize Material Cost Drivers

under 22 CFR 120.11.

Prioritize Labor Cost Drivers

Modem Sub-Assembly Defect Count by Defect Type

Modem Sub-Assembly Labor Type

- Drafting Labor
- Eng Admin Labor
- Eng Tech Labor
- Engineering Labor
- Inspection Labor
- Proc Eng Labor
- Prod Engineer Labor

DFMA Discussions and Actions for the Modem Sub-Assembly

Production Data:

- Assembly time triples
 due to defect X
- Test Error category Y correlates to defect X; is 40% of test errors
- Defect X occurred in 20% of builds
- Circuit build area recommended tolerance for any connector Z
- Material costs
- Assembly pain points / suggestions

Cost Driver Discussion Agenda:

- Scrap cost from defect X
- Customer returns from defect X
- Manufacturer variation of connector Z
- Alternates to connector Z
- Optimum Assembly Procedure
- Alternate circuit / assembly design

Meeting Attendees:

- Mechanical Engineer
- Manufacturing Engineer
- Test Technician
- Project Manager

Actions / Decisions: •EE present alternate component spec. in 2 weeks •ME present alternate assembly design in 4 weeks •MFE create preliminary assembly instruction in 4 weeks •PM create before / after cost scenarios

is not defined as controlled technical data under 22 CFR 120.11.

Modem Sub-Assembly Redesign

under 22 CFR 120.11.

Modem Sub-Assembly DFMA Case Study Summary

Projected Value of DFMA effort:

- 1. Reduced some Material Cost
- 2. Reduced Assembly Constraints = Reduced Defects = Reduced Labor

Facilitation Approach

- Met with Test Engineer to correlate defect data to design features
- Reviewed design features and assembly steps with Manufacturing Engineer, Design Engineer and Drafter
- Stakeholder Analysis
 - Program Manager valued reduction of product cost by DFMA
 - Engineer valued collaboration legwork to improve / validate his design
 - Operations / Test had a say in defect prevention to improve yield
- Influence Strategy
 - Impactful Data presentation, siting procurement and production sources; changed component choices and design features. Reciprocity and asking advice, encouraged collaboration to reach shared goals.

Radio Equipment Case Study

is not defined as controlled technical data under 22 CFR 120.11.

Radio Equipment Prioritized Material Cost Drivers

is not defined as controlled technical data under 22 CFR 120.11.

Radio Equipment Case Study Summary

Projected Value of DFMA effort:

- 1. Replaced an expensive heat exchanger and electronic components
- 2. Reduced projected transition-to-production labor
- Facilitation Approach
 - Reviewed 3D print and solid model with Design Engineer and Manufacturing Engineer, resulting in nine improvements to drawings, and assembly sequence and tools.
 - Provided lead time and price breaks on alternate components
- Stakeholder Analysis
 - Program Manager wanted non-recurring expenses (NRE) in control
 - Engineer valued collaboration to reduce transition-to-production labor
 - Operations / Test had a say in defect prevention to improve yield
- Influence Strategy
 - Impactful Data presentation, Urgency, Social Proof from senior engineer.
 - Reciprocity and asking Advice, and task follow-up to reach shared goals.

is not defined as controlled technical data under 22 CFR 120.11.

Antenna System Case Study

Eleven Principles associated with DFMA:

- 1. Mistake-proof the design
- 2. Minimize the number of parts
- 3. Minimize the use of fasteners
- 4. Minimize reorientation during assembly
- 5. Provide accessibility
- 6. Use modular subassemblies
- 7. Standardize parts and processes
- 8. Use self-locating features
- 9. Minimize operations and process steps
- 10. Make tolerances as liberal as possible
- 11. Avoid the need to make adjustments

Antenna System Assembly Scoring

Task (e.g. Fasten to XYZ)	Total Repeats (if > 1)	Approach	Fastening	Comments	Operation Score	Assy Time (sec)
Install cable plate b/w main and small box	6	Side with hold	Screw, stud, connector	Brazed Box starts upside down, inlet facing you	45	90
Install cable plate to side of PS endosure	8	Side with hold	Screw, stud, connector		45	120
Install big inlet plate	15	Side with hold	Screw, stud, connector	partial screws	45	225
Install small inlet plate	7	Side with hold	Screw, stud, connector	partial screws	45	105
fasten cables to RFE	7	Side with hold	Screw, stud, connector	outside of box	45	105
install RFE	4	Top without hold	Screw, stud, connector	counterweight or support underneath RFE if the box tips	70	48
connect and route RFE cables	7	Side with hold	Screw, stud, connector	4 tie downs?	45	105
Install fan tubes over RFE fans		Side with hold	Snap together	spin brazed box on table 180, outlets face you	75	6
fasten small outlet plate	3	Side with hold	Screw, stud, connector	partial screws	45	45
fasten big outlet plate	11	Side with hold	Screw, stud, connector	partial screws	45	165
install outlet fans	2	Side with hold	Screw, stud, connector		45	30
install PS module	6	Top with hold	Screw, stud, connector		60	90
install control module	10	Side without hold	Screw, stud, connector	(perhaps mount PS and control modules after inlet plates)	50	120
connect outlet fan power cable	1	Side with hold	Screw, stud, connector		45	15
connect, route power cables	7	Side with hold	Screw, stud, connector	6 tie downs?	45	105
connect, route control cables	3	Side with hold	Screw, stud, connector	3 tie downs?	45	45
Install small antenna	6	Top with hold	Screw, stud, connector	flip brazed box upside up	60	90
Install big antenna	5	Top with hold	Screw, stud, connector		60	75
fasten antenna rivets and nuts	2	Top with hold	Screw, stud, connector	swivel antenna	60	30
Install big antenna cover	12	Top without hold	Screw, stud, connector		70	144
connect and route antennna cables	4	Side with hold	Screw, stud, connector		45	60
fasten cover of brazed box	38	Top with hold	Screw, stud, connector		60	570
fasten small inlet cover	9	Side with hold	Screw, stud, connector	fasten covers as one of the last steps	45	135
fasten big inlet cover	14	Side with hold	Screw, stud, connector	fasten covers as one of the last steps	45	210
fasten small outlet cover	7	Side with hold	Screw, stud, connector	fasten covers as one of the last steps	45	105
fasten big inlet cover	13	Side with hold	Screw, stud, connector	fasten covers as one of the last steps	45	195
fasten small bottom plate	26	Top without hold	Screw, stud, connector	Can be done earlier, after small antenna cable fastened to antenna	70	312
fasten big bottom plate	48	Top without hold	Screw, stud, connector	ONE of the last steps, requires flipping the heavy box back over	70	576
All cable tie downs	13	Bias(angle) with hold	Snap ring, cable tie	min. 13 tie downs, depending on vibes and cable assy standard	45	234

Antenna System DFMA Design Changes

- 1. Reduced the type and count of fasteners
- 2. Planned efficient cable lengths and assembly
- 3. Accommodated testing access
- 4. Reduced assembly steps
- 5. Added threaded bosses for a rotating fixture
- 6. Created concept of rotating fixture
- 7. Beveled edges for smoother part mate and avoid connector damage

Antenna System Case Study Summary

Projected Value of DFMA effort:

1. Reduced significant labor in Assembly and Testing

- Facilitation Approach
 - Discussed assembly steps with Design Engineers, Mfg Engineer,
 Assembler, Fixture maker; aided by solid model and 3-D prototype.
- Stakeholder Analysis
 - Design Engineers and Program Manager had a pressing schedule but were open to the cost savings of DFMA and facilitated collaboration.
 - Production was willing to research assembly fixture options for the chance to make assembly easier.
- Influence Strategy
 - Used tight schedule and model flexibility to create urgency.
 - Asked opinions, encouraged research, built rapport, led by example, cited DFMA best practices
 - Aligned with shared purpose.

Conclusion

under 22 CFR 120.11.