

Implementation of DFMA in VAVE Methodology at SANMINA-SCI's Mechanical Systems Division

Ric Pena & Sundar Kamath Sanmina-SCI, Fremont CA

2012 INTERNATIONAL FORUM ON DFMA

BDI Providence, RI J*une 12, 2012*

Presented by Mike Bogosian, Sanmina-SCI Derry NH <u>mike.bogosian@sanmina-sci.com</u> (603 437 3179)

Sanmina-SCI Company Profile

- Founded in 1980, San Jose CA
- Global footprint 70+ facilities in 24 countries
- ~45,000 employees
- \$6.6B in Revenue, FY 2011 = 5
- System manufacturing solutions for key Infrastructure markets
- Diversified, strong customer base (Fortune 100)
- Operations Excellence & Quality: One I.T. System (Oracle) Mature, Effective Manufacturing & Quality Systems

Argentina • Australia • Brazil • Canada • Czech • China • Colombia • England • Finland • Germany Hungary • India • Indonesia • Ireland • Israel • Japan • Malaysia • Mexico • Scotland Singapore • South Africa • Sweden • Thailand • United States

Sanmina-SCI Focus: Technologies, Products & Services

Sanmina-SCI 'End-to-End' Integrated Services: from Components to Systems

SANM Confidential

Scope of Mechanical Systems Division

Configure to Order (CTO) / Build to Order (BTO)

Not For Distribution

Complex System Integration

Global Engineering Locations

OPTICAL, RF, MICROELECT. Turnkey System Design Module & Test engineering Kanata, Ottawa

MECHANICAL DESIGN PRODUCT DEVELOPMENT Calgary, Canada

SYSTEMS DESIGN (HW/SW) INTERCONNECT TECH. PCB, BP, SI - HIGH SPEED ENCLOSURES, VAVE FA/SI/Thermal Labs San Jose & Fremont CA

VIKING TECHNOLOGIES Memory Modular Solutions Foothill Ranch CA

NEWISYS STORAGE Turnkey System Design Co Springs CO

OPTICAL COMMUNICATIONS Turnkey System Design Carrollton TX

MEDICAL SYSTEMS, DEFENSE & AEROSPACE Turnkey System Design Validation Test Labs Huntsville AL

TEST ENGINEERING Guadalajara, MEXICO

14 Design Centers in 8 countries 23 NPI locations in 13 countries 450+ dedicated design and NPI engineers 1,500+ technical manufacturing resources.

Canada • China • Finland • Germany • India • Ireland • Israel Japan • Mexico • Scotland • Singapore • Sweden • United States

Design & Value Engineering

Early Involvement Role of DFMA

Early Engineering Involvement in Customer's Product Life Cycle

Quick Turn, NPI Services Close to Customer

- Product Design
- Early Involvement, DFx
- Technology & Components
- Value Engineering (DFMA)
- Test System Design

Global, "Best Cost" Manufacturing

- Volume Manufacturing launch
- Transfer to "Best Cost" Facility
- Global Supply Management
- Ongoing Value Engineering
- Test Automation

Logistics & Repair Services

- Build / Configure to Order
- Direct Order Fulfillment
- Repair, Refurbishment
- Spares, Hubs
- Sustaining Engineering

Early Engineering Involvement in the Product Life Cycle

Design & New Product Introduction

Gateway to Volume Manufacturing Transfer to Lower-cost Regions

System level DFX Overview

DFM for PCB & Assembly

PCB Design Considerations SMT Design Considerations Design Considerations for Lead Free, WEEE

DFM for Microelectronics

Design Considerations for Eutectic Die Attach Design Considerations for Components Attach Design Considerations for Wire Bonding

Design for RF

Transmission Line Design & Termination SMT Pad Design for RF Components Design Considerations for EMI

Design for Mechanical Assembly

Design Considerations for Enclosures Design Considerations for Inter-Wiring Assembly/Disassembly Guidelines

Design for Supply Chain

Supply Chain Total Cost of Ownership Alternate Sourcing Strategy

DFT for Structural Test

ICT Electrical & Mechanical Guidelines Boundary Scan Testing Requirements Limited Access Test Strategy

DFT For Functional Test

Built-in Self Test (BIST) Guidelines Board Partitioning of Functional Blocks Loopback Capabilities & Signals Access

Design for Photonics

Optical Mechanical Assembly Design Optical Components Design Guidelines Optical Design for Test

Design for Reliability

Reliability Considerations for O/E Devices FMECA, HALT & HASS Requirements Failure Rate Prediction Analysis Methods

Design for Maintainability

Design for Sustainability & Installability Design for Repairability & Serviceability

Design for Cost / Value Add Value Engineering

Value Engineering Approach

Objective: Isolate areas of product weaknesses and Improvement opportunities as part of early involvement:

- Analyze cost drivers: 80/20 rule dictates
- Interconnect complexity: multiple circuits, system interconnect layers
- Study ease of assembly
- Understand applied test practices
- Fabrication options: punch and form, cast, injection mold
- Apply BDI DFMA thought process
- Consider ways to streamline the supply chain for large complex fabrications – frame VI opportunities

Early Involvement by Test/Process Engineering in the product design cycle is critical to reducing total product costs.

DFMA Recommended Process Early Involvement

DFMA Software uses a question-and-answer approach to help determine the most cost-effective and efficient

- assembly method,
- manufacturing process, and
- materials for a particular part or product.

Design for Manufacture: Early Cost Estimating

Design For Assembly: Product Simplification

Example: Redesign of Cable Management

Existing Design

- 1. Welded Sheet metal part
- 2. High weight due to steel construction
- 3. Requires assembly/ Welding fixtures

Proposed changes

- 1. Create slide-in plastic inserts
- 2. Group inserts onto Channel\
- 3. Rivet to main support bracket

4.

4. Optimize strength using molded-in gussets

Benefits:

 Cable Management System - up to 60% Cost Reduction potential (confirmed thru BDI Analysis), by eliminating welding & fixtures, reducing weight, and improving assembly processes.

SANMINA-SCI

DFMA ANALYSIS - Material selection: Cast Urethane or Injection Molded?

SANMINA-SCI Thursday, July 22, 2010 3:24 PM 410-5440-003_Alternate

410-5440-003_Alternate.dfa Product: proto cafe, inj molding

Per product data

	proto cafe	inj molding
Entries (including repeats)	21	21
Number of different entries	8	8
Total assembly labor time, s	116.78	116.78
Weight, Ib	4.54	4.54

Per product costs

Labor cost, \$	2.21	2.21
Other operation cost, \$	0.00	0.00
Manuf. piece part cost, \$	30.31	42.37
Total cost without tooling, \$	32.52	44.59
Assy. tool or fixture cost, \$	0.00	0.00
Manuf. tooling cost, \$	28.26	6.64
Total cost, \$	60.78	51.23

Production data

Product life volume	2,000	2,000
Overall plant efficiency, %	85.00	85.00
Labor rate, \$/hr	58.00	58.00

Production life costs

Labor cost, \$	4,427	4,427
Other operation cost, \$	0	0
Manuf. plece part cost, \$	60,615	84,749
Total cost without tooling, \$	65,042	89,176
Assy. tool or fixture cost, \$	U	
Manuf. tooling cost, \$	56,521	13,284
Total cost, \$	121,564	102,461
DFA Index		
Theoretical minimum number of items	2	1
DFA Index	5.0	2.5

CAST URETHANE VS. INJECTION MOLDING:

CAST URETHANE MOLDING WILL WORK FOR LOW QUANTITY PROTOTYPE RUNS, BUT INJECTION MOLDING SUPPLIER HAS THE MOST COMPETITIVE PRICING / OVERALL LIFETIME COST.

(COMPARATIVE / BUDGETARY CALCS ONLY)

Example: Tube Frame to Sheet Metal Design

New Design reduces part count, remove welding and post finishing processes --New Design is a riveted C-Channel Assembly using pre-plated CRS

BDI Analysis estimates 58% cost savings

Example: Pedestal Foot Re-design

Redesign foot combines front and back features into on left/right foot

Part reduction from 11 parts to 5 parts and eliminates other brackets

Hardware reduction from 5 bolts to 3 bolts per foot

BDI Analysis estimates 37% cost savings

Example: Investment casting vs sheetmetal

Investment Cast Part

Sheetmetal part

Part Number:

New Part Number

15%-20% piece part savings going with sheet metal vs. cast Budgetary Tooling Cost: \$20K-\$25K for Cast vs. \$500-\$750 for Sheet metal

Example (cont'd) - DFC Analysis

Investment Cast Part

Part Number:

Product life volume	1,800
Batch size	225
Total cost, \$	34.57
Piece part cost, \$	25.43
Initial tooling investment, \$	16,456

The chart shows a breakdown of the costs, \$

Note: Threaded inserts and labor to install cost not considered in this analysis

Sheetmetal Part

New Part Number:

Product life volume	1,800
Batch size	1,740
Total cost, \$	29.11
Piece part cost, \$	28.84
Initial tooling investment, \$	500

The chart shows a breakdown of the costs, \$

SANMINA-SCI

Value Engineering Example: Original vs. Unified one piece redesign

Per product data

	Original	Unified Chassis
Entries (including repeats)	6	1
Number of different entries	4	1
Total assembly labor time, s	20.70	3.45
Weight, Ib	10.24	* 0.00

*Note: Weight not given for some items. Total weight may be incomplete.

Per product costs

Labor cost, \$	0.20	0.03
Other operation cost, \$	0.00	0.00
Manuf. piece part cost, \$	33.61	12.92
Total cost without tooling, \$	33.81	12.95
Assy. tool or fixture cost, \$	0.00	0.00
Manuf. tooling cost, \$	0.00	0.00
Total cost, \$	33.81	12.95

Production data

Product life volume	10,000	10,000
Overall plant efficiency, %	85.00	85.00
Labor rate, \$/hr	30.00	30.00

Production life costs

Labor cost, \$	2,029	338
Other operation cost, \$	0	0
Manuf. piece part cost, \$	336,071	129,210
Total cost without tooling, \$	338,100	129,548
Assy. tool or fixture cost, \$	0	0
Manuf. tooling cost, \$	0	0
Total cost, \$	338,100	129,548

DFA Index

Theoretical minimum number of items	0	0
DFA Index	0.0	0.0

Examples of Electromechanical Products with Design/VAVE content

Power Distribution Cabinet Semi-conductor

Vibration Isolation Metrology Tool

Chemical Recycling

Semiconductor: Lithography Tool

Networking Compact Router

Datacom:

Enterprise Switch

Server Rack

Medical Cart

Multimedia Gaming System

Stack I/F Unit Fuel cell car

Concentrated Solar Service Module

Inverter Cabinet

Gas Analyzer Petroleum industry

Telecom Wireless Base Station

Tooling - SemiC

equipment

Sanmina-SCI's Mechanical Systems Division has successfully implemented the BDI-based DFMA process into its VAVE methodology - for new product designs as well as "build to print" existing designs.

Cost savings are generally higher when an Early Involvement (EI-DFMA) approach is accepted by the OEM design authority

Successful implementation requires proactive cross-functional team effort between customer engineering, design, manufacturing engineering, estimation and supply chain.

Improvement opportunities as part of early involvement typically cover:

Interconnect complexity: multiple circuits, system interconnect layers, ease of assembly, test practices, fabrication options, and supply chain optimization

Thank You!

