

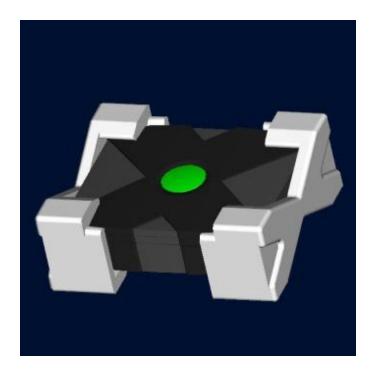
Advantages of Using Molded Foam in Product Development 2012 International Forum on Design for Manufacture and Assembly

Business Unit Within Sonoco

- \bowtie Sonoco founded in 1899
- Global manufacturer of consumer and industrial components and packaging products
- ✓ 2011 sales: \$4.5B
- ✓ 300+ Plants Globally
- Acquired Tegrant
 Corporation including
 Protexic Brands in
 November, 2011

What does Protexic do?

- Develop & manufacture custom molded and fabricated foam packaging & components
- ✓ Primary Processes are:
 - » "Steam Chest" molding of expanded foam resins.
 - » Fabrication of foams, wood, corrugated & paper
- ✓ Primary applications of these processes:
 - » Protective Packaging
 - » Returnable Packaging
 - » Components

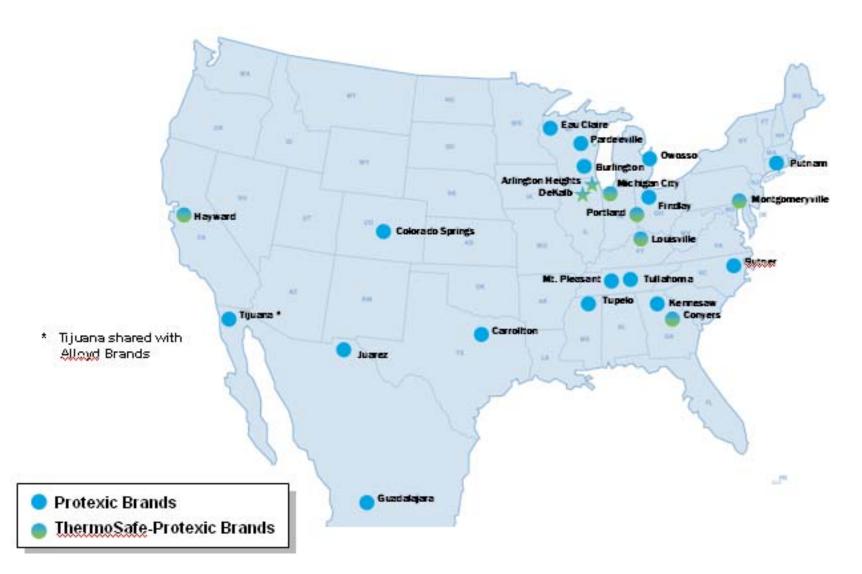


Traditional High Volume Molded EPS Foam Applications

Worldwide X-Box Design

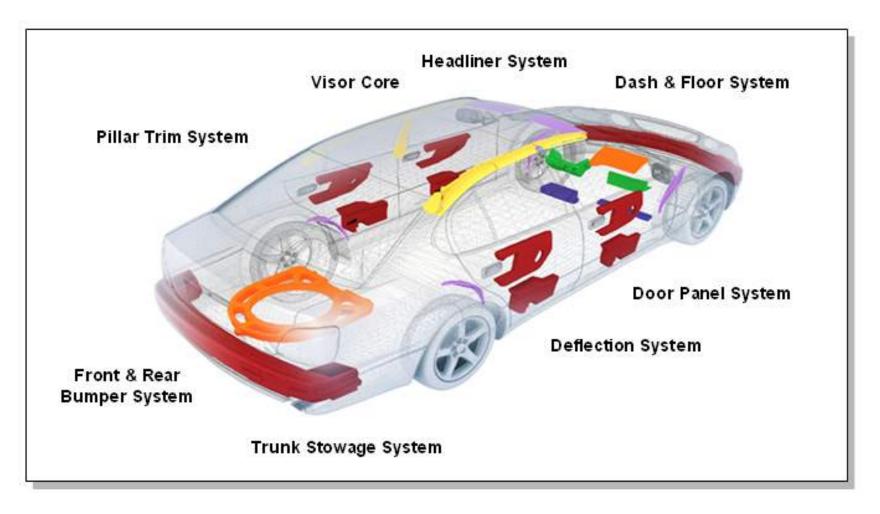
Typical Flat Screen TV Pack

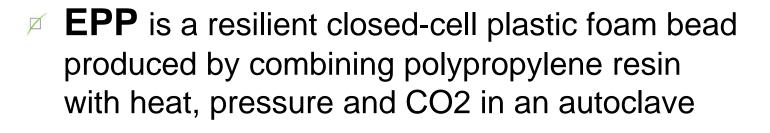
"Steam Chest" Molding Machine & Tooling



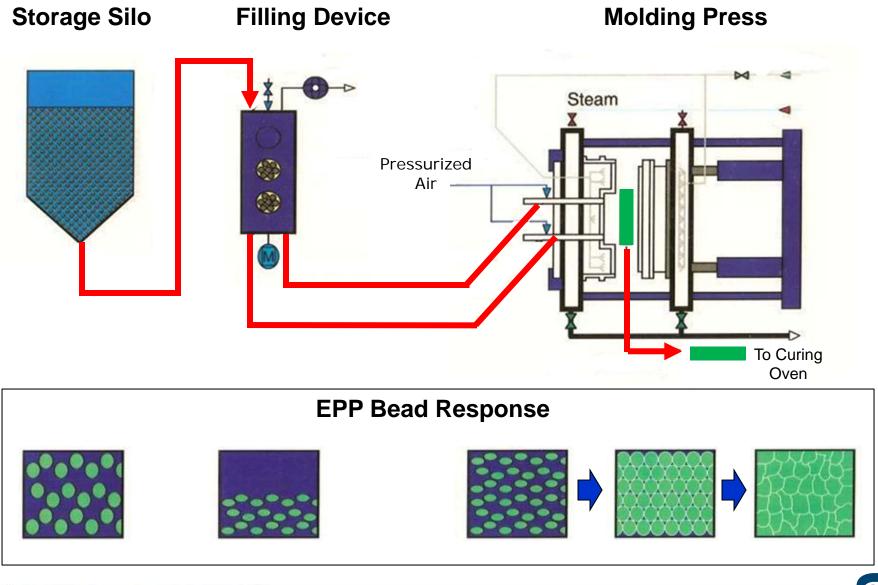
Protexic Footprint

Protexic Applications




Auto Components- Driving Innovation

Expanded Polypropylene (EPP)


EPP Properties

- » Chemical and solvent resistant
- » Minimal water absorption
- » Good UV resistance
- » Thermally stable: -30°C to 85°C
- » Available in an anti-static grade
- » Can meet the UL-94 HF1 / HF2 requirements
- » Fully recyclable

Growth in Molded Foam Applications in Automotive <u>1996</u>

Bumper systems

- Bumpers
- Exterior Energy Absorbers

Head Impact Systems

- Pillars
- Head Rests
- Sun Visors
- Headliner Rails

Impact Systems

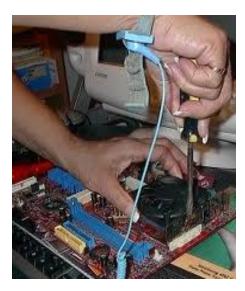
- Interior Energy Absorbers
- Door Panels
- Knee Protection

Components

- Tool Kits
- Trunk Liners
- Load Floors
- Console Components

Seating Systems

- Bolsters
- Seat Cores
- Seat Backs



Part Count, Product Complexity Reduction

A typical electromechanical product secures the 'good " parts with:

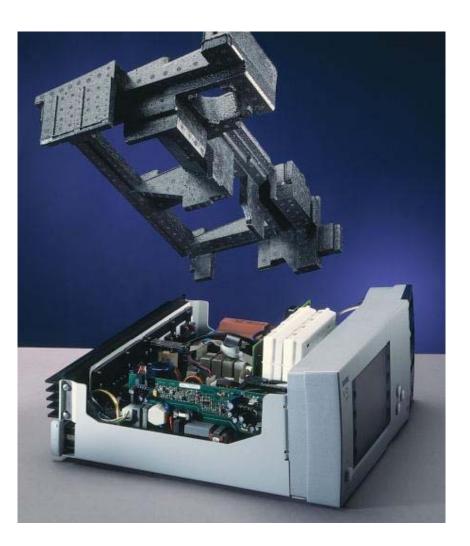
- » Screws
- » Brackets
- » Wire tires
- » Etc.

13

Disadvantages of Extra Parts

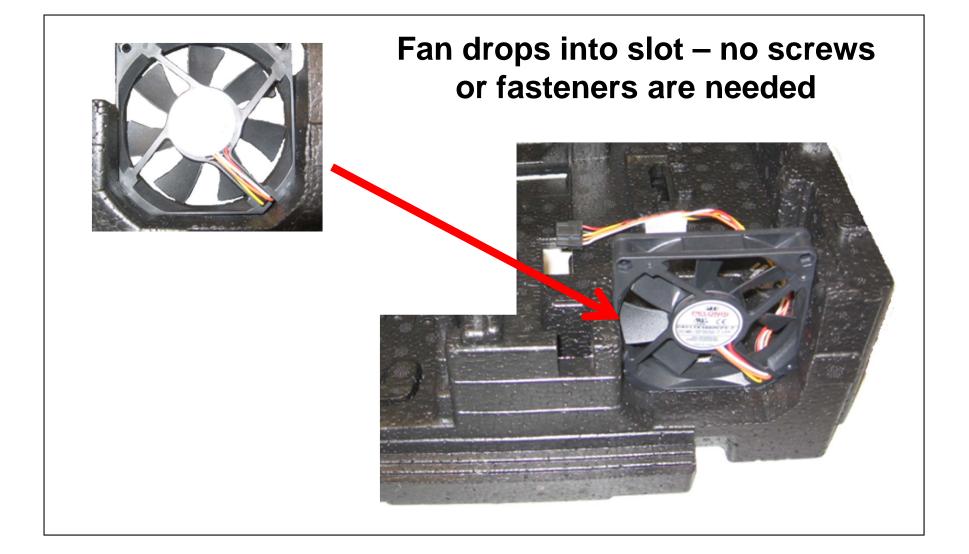
- Adds Manufacturing Complexity
- ✓ Labor Intensive Assembly
- Larger Bill of Materials
- Each one of the screws and fasteners must be purchased, inventoried and tracked
- Puts the product designers at odds with those responsible for sourcing the components and manufacturing the products
- Difficulty servicing/cleaning

What if there was an innovative solution?



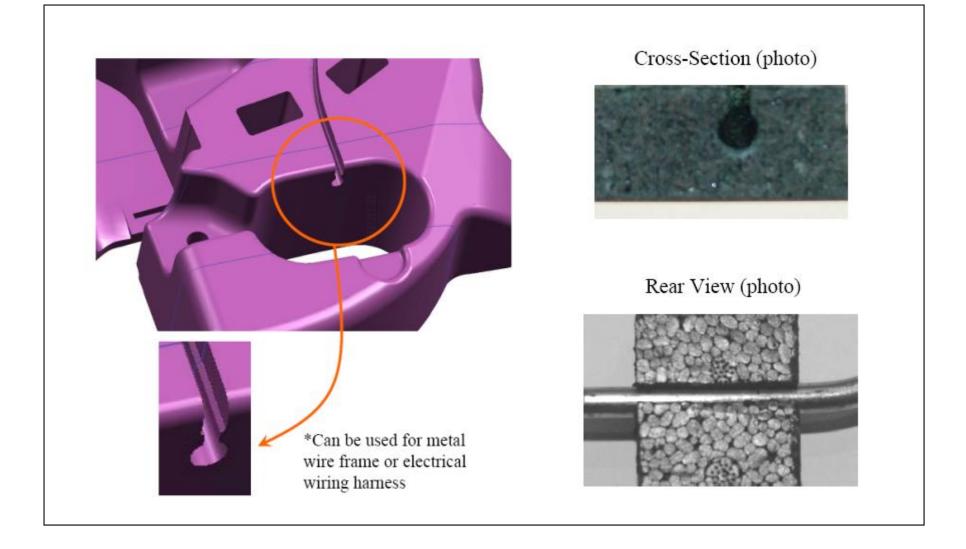
EPP As An Internal Structure

- EPP is used to replace a conventional "chassis" or internal construction of a product with a "sandwich" of custom molded EPP parts
- Pioneered & patented by Hewlett Packard engineers in Germany in early 90's
- Concept used in early mid
 90's in products such as:
 - » Engineering Workstations
 - » Peripheral Devices
 - » Portable Defibulators
 - » Analytical products


Use of Form Fits in a Product Design

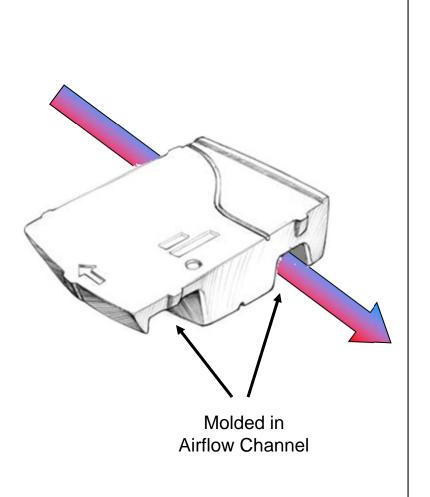
- Fixture the product components without use of fasteners
- Create wire/tube routing channels with easy undercuts
- Create improved Air flow management by using complex shapes
- Reduce external product housing costs by using the internal foam chassis to support the housing

Components Form Fit



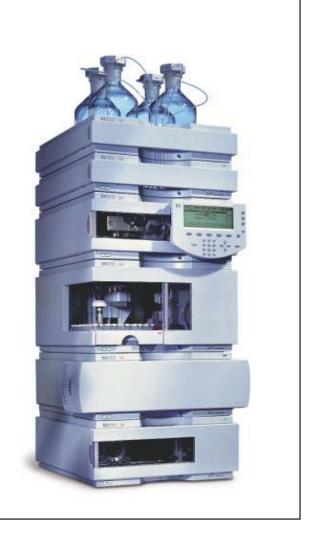
16

Tube Routing

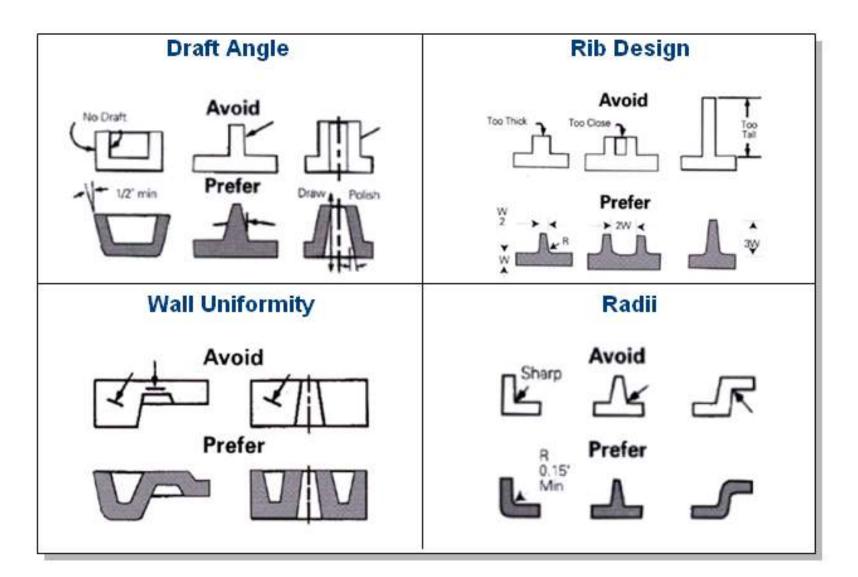


Airflow Management

- Channels can be molded into the foam to manage airflow
- Provides pinpoint cooling exactly where it is needed
- Allows the use of smaller fans
 - » Quieter Operation
 - » More energy efficient
 - » Especially beneficial for portable devices



Stronger Inner Chassis


- Decouples the functionality of the inner chassis and the outer housing
- Reduces the strength required from the outer housing – allows thinner gauge materials to be used
- Different interior configurations to be made without having to change the outer housing
- Protects the internal components in case of drops and falls

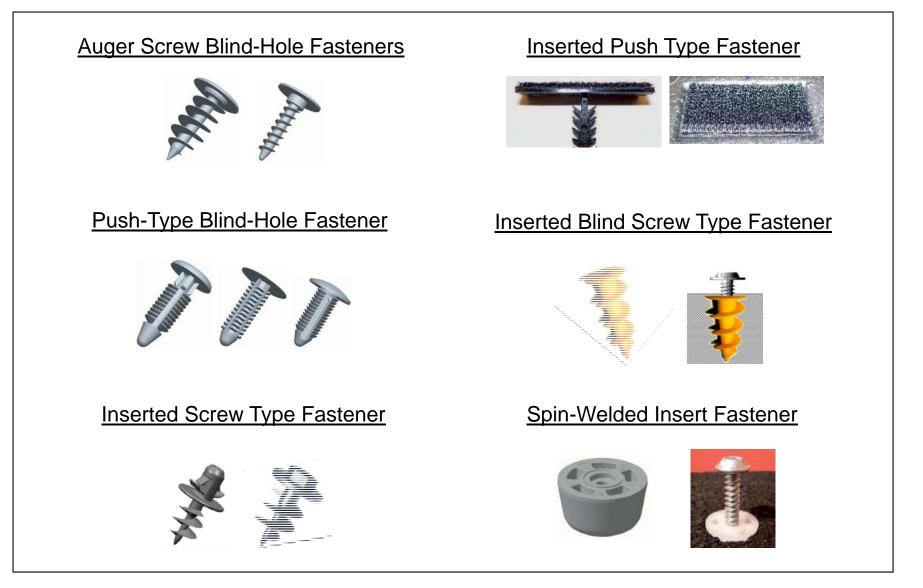
EPP Design Guidelines

Flammability Properties

Test Method	Units	Results			
Federal Motor Vehicle Safety Standard (FMVSS) 302	< 4.0 in/min ¹	Pass			
ASTM-E84	Flame Spread Index ²	Class A Rating (per NFPA)			
ASTM-E84	Smoke Development Index ²	Class A Rating (per NFPA)			
ASTM-E162	Flame Spread Index (Fs)	Class A (I) Rating ² Fs = 10.87 Class B (II) Rating ³ Fs = 56.64			
ASTM-E662	Smoke Optical Density(Ds) ^{2,3}	@ 1.5 min = 2.0 to 2.8 @ 4.0 min = 14.5 to 20.3			
ASTM-D635 (as referenced in ANSI Z87.1)	Burn Rate	Pass ³			
UL-94	Flame Class	V0 ^{3a} HF-1 ^{3a}			
FAR 25.853(a) [Appendix F, Part 25]	Burn Rate	Pass⁵			
CAL-117	Max. % Weight Loss	Pass			

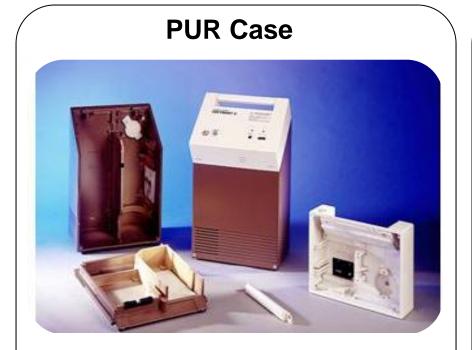
- Note¹: Both EPP (Standard Grade; density >20 g/l) and FR-EPP (all densities) pass FMVSS-302.
- Note²: Testing performed on ARPRO FR-EPP at 45 g/l molded density at 1" thick. NFPA (National Fire Protection Association) rating based on test results.
- Note3: Testing performed on ARPRO FR-EPP at 30 g/l molded density at 1" thick. a = Flame Class Equivalent Note⁴: Testing performed on ARPRO FR-EPP at 40 & 60 g/l. Note⁵: 60 Second Vertical Burn (30 & 45 g/l molded density).

Material Properties - EPP



PHYSICAL PROPERTY	TEST METHOD	UNITS	TEST RESULTS							
Density	ASTM-D3575	grams/liter	20	30	45	60	67	82	90	
Compressive Strength	ASTM-D3575	MPa								
@25% Strain			0.10	0.16	0.28	0.39	0.44	0.60	0.69	
@50% Strain			0.16	0.23	0.37	0.53	0.58	0.80	0.93	
@75% Strain			0.31	0.44	0.77	1.07	1.26	1.80	2.08	
Compression Set	ASTM-D3575	%	14	12	12	11	11	10	10	
Tensile Strength	ASTM-D3575	MPa	0.26	0.38	0.46	0.62	0.71	0.87	0.97	
Tensile Elongation	ASTM-D3575	%	15	15	14	14	13	13	12	
Tear Strength	ASTM-D3575	KN/m	1.74	2.13	2.73	3.25	3.51	4.07	4.35	
Flexural Strength	ASTM-D790	MPa	.21	.38	.54	.72	.86	1.08	1.16	
Flexural Modulus	ASTM-D790	MPa	9.8	11.6	14.5	19.0	22.2	28.9	31.1	
Coefficient of Linear Thermal Expansion	ASTM-D696	mm/mm/°C x 10 ⁻⁵								
20°C to -40°C			6.8	5.9	5.5	4.3	4.1	3.9	3.7	
20°C to 80°C			10.8	10.2	9.8	8.7	7.9	7.5	6.8	
Water Absorption	ASTM-C272	gms/cc x 10 ⁻³	10.4	8.1	6.2	5.1	4.5	4.2	3.5	
Flammability	FMVSS 302	< 100 mm/min.	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
Chemical Resistance (Auto fuels, fluids, solvents)	Various	1 hr exposure	Pass	Pass	Pass	Pass	Pass	Pass	Pass	

EPP Fasteners



Case Study #1

53 Fasteners / Brackets

EPP Chassis with PP Cover

13 Fasteners / Brackets

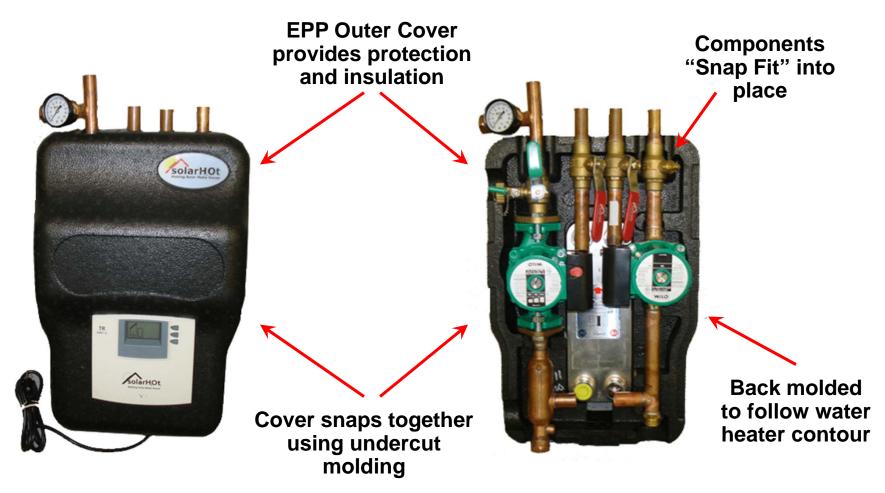
Tube routing

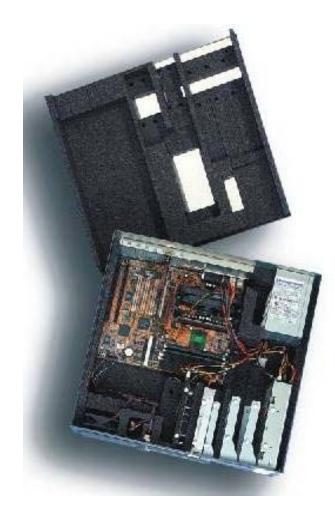
Snap-fit for

filter modules

integrated

Case Study #1

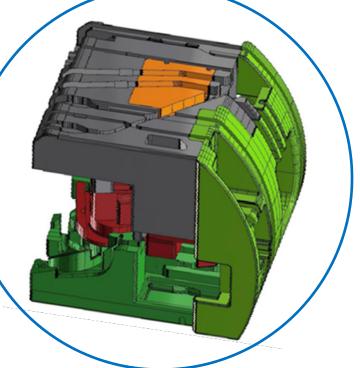

- ✓ Air ducting
- ✓ Noise encapsulation
- Easy access for service
- Improved thermal properties due to forced airflow


Solar Hot Water Heater Control Panel

Case Study #3

Benefits from Using EPP

- 70% reduction in housing mech. parts
- ✓ 95% reduction in screw joints
- ✓ 50% reduction in assembly time
- ✓ 90% reduction in disassembly time
- ✓ 30% reduction in protective packaging
- 50% reduction in engineering time for mechanical development of housing
- ✓ 50% reduction in weight of plastic



LIFEBRIDGE Disposal Patient Module

- Significant weight reduction
- Form Fit No fasteners
- Cables and tubes routed in the foam
- Recycling after use faster no disassembly tools required

E-PAC Summary

Design and Manufacturing

- Internal structure can change without changing external enclosure
- EPP blocks CNC'd for ease of prototyping

Assembly of Final Product

- Simple, fast and cost-effective assembly of components
- Reduction in the number of parts
- Significant reduction in assembly time
- No additional joining elements or assembly tools needed

Product Performance

- Reduced product mass
- Good protection against mechanical shock and vibration
- On-spot cooling of components as a result of air channels in the foam
- ✓ 100% recyclable

For More Information

Visit: <u>www.protexic.com/specialty_components</u> or <u>www.epac-foam.com</u>

Rob Cole Rob.cole@sonoco.com 248-245-0494

Scott Novak Scott.novak@sonoco.com 847-632-9622

